Mitochondrial K(ATP) channel openers activate the ERK kinase by an oxidant-dependent mechanism.
نویسندگان
چکیده
Extracellular signal-regulated kinases (ERKs) are key regulatory proteins that mediate cell survival, proliferation, and differentiation. Reactive oxygen species (ROS) may play a role in activation of the ERK pathway. Because mitochondria are a major source of ROS, we investigated whether mitochondria-derived ROS play a role in ERK activation. Diazoxide, a potent mitochondrial ATP-sensitive K+ (K(ATP)) channel opener, is known to depolarize the mitochondrial membrane potential and cause a reversible oxidation of respiratory chain flavoproteins, thus increasing mitochondrial ROS production. Using THP-1 cells as a model, we postulated that opening mitochondrial K(ATP) channels would increase production of ROS and, thereby, regulate the activity of the ERK kinase. We found that opening mitochondrial K(ATP) channels by diazoxide induced production of ROS as determined by an increased rate of dihydroethidium and dichlorofluorescein fluorescence. This increased production of ROS was associated with increased phosphorylation of ERK kinase in a time-dependent fashion. The MEK inhibitors PD-98059 and U-0126 blocked ERK activation mediated by diazoxide. N-acetylcysteine, but not diphenyleneiodonium, attenuated ERK activation mediated by diazoxide. Adenovirus-mediated overexpression of manganese superoxide dismutase, which is expressed in mitochondria, decreased the rate of dihydroethidium oxidation as well as ERK activation. We conclude that mitochondrial K(ATP) channel openers trigger ERK activation via mitochondria-derived ROS.
منابع مشابه
FINAL ACCEPTED VERSION Mitochondrial KATP Channel Openers Activate the ERK Kinase by an Oxidant- Dependent Mechanism
Extracellular signal regulated kinases (ERKs) are key regulatory proteins that mediate cell survival, proliferation and differentiation. Reactive oxygen species (ROS) may play a role in activation of the ERK pathway. Since mitochondria are a major source of ROS, we investigated whether mitochondrial-derived ROS play a role in ERK activation. Diazoxide, a potent mitochondrial ATP-sensitive K + c...
متن کاملEffect of ATP-Dependent K+ Channel Openers and Blockers on Serum Concentration of Aldosterone in Rats
There are many reports for involvement of ATP-sensitive potassium channels in pancreatic, cardiac and vascular smooth muscle cells. This study examined the effect of single doses of K+ channel openers diazoxide, minoxidil and K+ channel blockers chlorpropamide, glibenclamide on serum concentration of aldosterone in male rats. Blood samples were obtained 60 minutes after drug treatment and serum...
متن کاملMitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function.
Discovered in the cardiac sarcolemma, ATP-sensitive K+(KATP) channels have more recently also been identified within the inner mitochondrial membrane. Yet the consequences of mitochondrial KATP channel activation on mitochondrial function remain partially documented. Therefore, we isolated mitochondria from rat hearts and used K+ channel openers to examine the effect of mitochondrial KATPchanne...
متن کاملPotassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation.
K(+) channel openers have been recently recognized for their ability to protect mitochondria from anoxic injury. Yet the mechanism responsible for mitochondrial preservation under oxidative stress is not fully understood. Here, mitochondria were isolated from rat hearts and subjected to 20-min anoxia, followed by reoxygenation. At reoxygenation, increased generation of reactive oxygen species (...
متن کاملNeuroprotective Effect of Mitochondrial Katp Channel Opener Upon Neuronal Cortical Brain of Rat Population
Purpose: So far there is no effective drug therapy to prevent neuronal loss after brain stroke. In the present study we studied effects of The Mitochondrial K-ATP channel regulators on neuronal cell population and neurological function after ischemia reperfusion in the rat. Materials and Methods: Rats temporarily subjected to four vessels occlusion for 15 minutes followed by 24 hours reperfusi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 283 1 شماره
صفحات -
تاریخ انتشار 2002